nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.42 219-229
介孔Ti_3C2负载酞菁铁电催化剂设计及其碱性条件下氧还原性能研究(英文)
基金项目(Foundation): National Outstanding Youth Science Foundation,China (No. 52225204)
邮箱(Email): fxbu@shu.edu.cn;wluo@dhu.edu.cn;
DOI: 10.19884/j.1672-5220.202404003
摘要:

MXene因其高导电性、大比表面积和可调表面官能团而受到广泛关注。然而,MXene(如Ti_3C2)纳米片极易堆叠,其负载位点主要为面内位点,对酞菁铁(phthalocyanine, FePc)的氧还原性能提升有限。该文采用简单的超声液相复合策略制备了介孔Ti_3C2(Meso-Ti_3C2)负载的FePc催化剂(FePc/Meso-Ti_3C2)。Meso-Ti_3C2具有大量介孔和丰富的边缘位点,可优化FePc分子的四配位FeN4中心的配位环境和电子结构,改善传质并提高活性位点的可及性,从而提升氧还原性能。FePc/Meso-Ti_3C2在碱性条件下展现出优异的氧还原反应活性和稳定性,半波电位为0.914 V vs. RHE,Tafel斜率为57.2 mV/dec。以FePc/Meso-Ti_3C2为催化剂的锌空气电池峰值功率密度为183.1 mW/cm2,且具有高循环稳定性,性能超过FePc/Ti_3C2和商用20%Pt/C催化剂(Pt质量占20%)。

Abstract:

MXene has attracted great attention due to its high conductivity, large specific surface area and tunable surface functional groups. However, MXene(e.g., Ti_3C2) nanosheets tend to stack and mainly offer in-plane sites, showing limited capability in improving the oxygen reduction reaction(ORR) performance of iron phthalocyanine(FePc). In this study, mesoporous Ti_3C2(Meso-Ti_3C2) loaded FePc(FePc/Meso-Ti_3C2) catalysts were prepared by a simple ultrasonic liquid-phase compounding strategy. Meso-Ti_3C2 possesses abundant mesopores and edge sites, which optimize the coordination environment and the electronic structure of the FeN4 center in FePc. This optimization improves the mass transfer and the accessibility of the active sites, synergistically enhancing the ORR performance of FePc. As a result, FePc/Meso-Ti_3C2 shows excellent ORR activity and stability under alkaline conditions with a half-wave potential of 0.914 V against the reversible hydrogen electrode(RHE) and a Tafel slope of 57.2 mV/dec. Furthermore, the zinc-air battery assembled with FePc/Meso-Ti_3C2 delivers a peak power density of 183.1 mW/cm2 and a good long-term discharge stability, exceeding those of FePc/Ti_3C2 and commercial 20% Pt/C catalysts(20% Pt by mass).

参考文献

[1] SHI L,LIU D,LIN X N,et al.Stable and high-performance flow H2-O2 fuel cells with coupled acidic oxygen reduction and alkaline hydrogen oxidation reactions[J].Advanced Materials,2024,36(23):2314077.

[2] LIU Y Y,ZHOU L M,LIU S L,et al.Fe,N-inducing interfacial electron redistribution in NiCo spinel on biomass-derived carbon for bi-functional oxygen conversion[J].Angewandte Chemie International Edition,2024,63(16):e202319983.

[3] SUNTIVICH J,GASTEIGER H A,YABUUCHI N,et al.Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J].Nature Chemistry,2011,3(7):546-550.

[4] YAO W,HU A Q,DING J T,et al.Hierarchically ordered macro-mesoporous electrocatalyst with hydrophilic surface for efficient oxygen reduction reaction[J].Advanced Materials,2023,35(30):2301894.

[5] LIAN Y B,YANG W J,ZHANG C F,et al.Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries[J].Angewandte Chemie International Edition,2020,59(1):286-294.

[6] GE X M,SUMBOJA A,WUU D,et al.Oxygen reduction in alkaline media:from mechanisms to recent advances of catalysts[J].ACS Catalysis,2015,5(8):4643-4667.

[7] MISTRY H,VARELA A S,KüHL S,et al.Nanostructured electrocatalysts with tunable activity and selectivity[J].Nature Reviews Materials,2016,1(4):16009.

[8] ZHANG Z P,DOU M L,JI J,et al.Phthalocyanine tethered iron phthalocyanine on graphitized carbon black as superior electrocatalyst for oxygen reduction reaction[J].Nano Energy,2017,34:338-343.

[9] BAKER R,WILKINSON D P,ZHANG J J.Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures[J].Electrochimica Acta,2008,53(23):6906-6919.

[10] LUO Y J,CHEN Y H,XUE Y L,et al.Electronic structure regulation of iron phthalocyanine induced by anchoring on heteroatom-doping carbon sphere for efficient oxygen reduction reaction and Al-air battery[J].Small,2022,18(2):2105594.

[11] ZHU S,DING L T,ZHANG X H,et al.Biaxially-strained phthalocyanine at polyoxometalate@ carbon nanotube heterostructure boosts oxygen reduction catalysis[J].Angewandte Chemie International Edition,2023,62(42):e202309545.

[12] XU S X,DING Y X,DU J,et al.Immobilization of iron phthalocyanine on pyridine-functionalized carbon nanotubes for efficient nitrogen reduction reaction[J].ACS Catalysis,2022,12(9):5502-5509.

[13] LI G L,CAO S,LU Z F,et al.FePc nanoclusters modified NiCo layered double hydroxides in parallel with Ti3C2 MXene as a highly efficient and durable bifunctional oxygen electrocatalyst for zinc-air batteries[J].Applied Surface Science,2022,591:153142.

[14] LU Q,WU H,ZHENG X R,et al.Controllable constructing Janus homologous heterostructures of transition metal alloys/sulfides for efficient oxygen electrocatalysis[J].Advanced Energy Materials,2022,12(42):2202215.

[15] LI L B,TANG X N,HUANG S H,et al.Longitudinally grafting of graphene with iron phthalocyanine-based porous organic polymer to boost oxygen electroreduction[J].Angewandte Chemie International Edition,2023,62(22):e202301642.

[16] LI J J,XIA W,TANG J,et al.Metal-organic framework-derived graphene mesh:a robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media[J].Journal of the American Chemical Society,2022,144(21):9280-9291.

[17] TRAN P K L,TRAN D T,AUSTERIA P M,et al.Intermolecular metallic single-site complexes dispersed on Mo2TiC2Tx/MoS2 heterostructure induce boosted solar-driven water splitting[J].Advanced Energy Materials,2023,13(15):2203844.

[18] ZHANG Y,ZHAO Q,DANIL B,et al.Oxygen-vacancy-induced formation of Pt-based intermetallics on MXene with strong metal-support interactions for efficient oxygen reduction reaction[J].Advanced Materials,2024,36(25):2400198.

[19] BAI X,GUAN J Q.MXenes for electrocatalysis applications:modification and hybridization[J].Chinese Journal of Catalysis,2022,43(8):2057-2090.

[20] LI Z L,ZHUANG Z C,LV F,et al.The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis:Fe 3d electron delocalization matters[J].Advanced Materials,2018,30(43):1803220.

[21] DAI Y K,LIU B,ZHANG Z Y,et al.Tailoring the d-orbital splitting manner of single atomic sites for enhanced oxygen reduction[J].Advanced Materials,2023,35(14):2210757.

[22] ZHANG G X,YANG H,ZHOU H J,et al.MXene-mediated interfacial growth of 2D-2D heterostructured nanomaterials as cathodes for Zn-based aqueous batteries[J].Angewandte Chemie International Edition,2024,63(18):e202401903.

[23] SHI T L,HOU X,GUO S Q,et al.Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano-bio interactions[J].Nature Communications,2021,12(1):493.

[24] XIE M,LUO W,QIU P P.Mesoporous carbon nanofibers loaded with ordered PtFe alloy nanoparticles for electrocatalytic nitrate reduction to ammonia[J].Journal of Donghua University (English Edition),2024,41(4):365-376.

[25] BU F X,SUN Z H,ZHOU W H,et al.Reviving Zn0 dendrites to electroactive Zn2+ by mesoporous MXene with active edge sites[J].Journal of the American Chemical Society,2023,145(44):24284-24293.

[26] ZHANG W,ZHANG J W,WANG N,et al.Two-electron redox chemistry via single-atom catalyst for reversible zinc-air batteries[J].Nature Sustainability,2024,7:463-473.

[27] ZHAO Q N,ZHOU W Z,ZHANG M X,et al.Edge-enriched Mo2TiC2Tx/MoS2 heterostructure with coupling interface for selective NO2 monitoring[J].Advanced Functional Materials,2022,32(39):2203528.

[28] BASOVA T V,KISELEV V G,DUBKOV I S,et al.Optical spectroscopy and XRD study of molecular orientation,polymorphism,and phase transitions in fluorinated vanadyl phthalocyanine thin films[J].The Journal of Physical Chemistry C,2013,117(14):7097-7106.

[29] ZHANG Y,LIU Y Q,ZHOU J P,et al.Preparation of high conductive medium and establishment of large capacity conductive channel[J].Advanced Materials,2023,35(47):2307363.

[30] ZHANG J,ZHAO Y F,ZHAO W T,et al.Improving electrocatalytic oxygen evolution through local field distortion in Mg/Fe dual-site catalysts[J].Angewandte Chemie International Edition,2023,62(52):e202314303.

[31] NGUYEN T H,TRAN P K L,DINH V A,et al.Metal single-site molecular complex-MXene heteroelectrocatalysts interspersed graphene nanonetwork for efficient dual-task of water splitting and metal-air batteries[J].Advanced Functional Materials,2023,33(7):2210101.

[32] PENG W,LIU J X,LIU X Q,et al.Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production[J].Nature Communications,2023,14(1):4430.

[33] HUANG H J,YU D S,HU F,et al.Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries [J].Angewandte Chemie International Edition,2022,61(12):e202116068.

[34] LIU H,JIANG L Z,KHAN J,et al.Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction[J].Angewandte Chemie International Edition,2023,62(3):e202214988.

[35] LIU M J,LEE J,YANG T C,et al.Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for pH-universal oxygen reduction[J].Small Methods,2021,5(5):2001165.

[36] JIANG L L,DUAN J J,ZHU J W,et al.Iron-cluster-directed synthesis of 2D/2D Fe-N-C/MXene superlattice-like heterostructure with enhanced oxygen reduction electrocatalysis[J].ACS Nano,2020,14(2):2436-2444.

[37] HAN Q L,ZHAO X M,LUO Y H,et al.Synergistic binary Fe-Co nanocluster supported on defective tungsten oxide as efficient oxygen reduction electrocatalyst in zinc-air battery [J].Advanced Science,2022,9(4):2104237.

[38] LEI Y,YANG F,XIE H M,et al.Biomass in situ conversion to Fe single atomic sites coupled with Fe2O3 clusters embedded in porous carbons for the oxygen reduction reaction [J].Journal of Materials Chemistry A,2020,8(39):20629-20636.

[39] LIU M,WANG X M,CAO S F,et al.Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction[J].Advanced Materials,2024,36(19):2309231.

[40] WANG M,ZHANG Z,ZHANG S L,et al.Non-planar nest-like [Fe2S2] cluster sites for efficient oxygen reduction catalysis [J].Angewandte Chemie International Edition,2023,62(22):e202300826.

[41] TIAN H,SONG A L,ZHANG P,et al.High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media[J].Advanced Materials,2023,35(14):2210714.

[42] HUO L P,LV M H,LI M J,et al.Amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived multi-heteroatoms-doped carbon for ORR/OER bifunctional electrocatalysis[J].Advanced Materials,2024,36(18):2312868.

[43] JI B F,GOU J L,ZHENG Y P,et al.Metalloid-cluster ligands enabling stable and active FeN4-Ten motifs for the oxygen reduction reaction[J].Advanced Materials,2022,34(28):2202714.

基本信息:

DOI:10.19884/j.1672-5220.202404003

中图分类号:O643.36;TM911.41

引用信息:

[1]王鑫,惠明明,杨升元等.介孔Ti_3C_2负载酞菁铁电催化剂设计及其碱性条件下氧还原性能研究(英文)[J].Journal of Donghua University(English Edition),2025,42(03):219-229.DOI:10.19884/j.1672-5220.202404003.

基金信息:

National Outstanding Youth Science Foundation,China (No. 52225204)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search